SWANA 2009 Landfill Gas Utilization Excellence Award Application

SIOUX FALLS LANDFILL GAS PIPELINE
SIoux FALLS REGIONAL SANITARY LANDFILL
Sioux Falls, South Dakota
TABLE OF CONTENTS
Sioux Falls Regional Sanitary Landfill’s Landfill Gas Utilization

1.0 Introduction ... 3
 1.1 Executive Summary ... 3
 1.2 Introduction and Background Information ... 3
2.0 Design & Construction ... 5
 2.1 Site Characteristics and Construction Techniques .. 5
 2.2 Merits of the Site Preparation and Design .. 6
 2.3 Planning .. 6
3.0 Environmental Controls .. 7
 3.1 Discussion of Controls .. 7
 3.2 Overall Program Impact .. 9
 3.3 Compatibility with the Environment .. 10
4.0 Regulatory Compliance ... 11
 4.1 Integrated Solid Waste Management System ... 11
 4.2 Environmental Compliance .. 11
 4.3 Awards and Data ... 11
5.0 Planning, Operations & Financial Management ... 12
 5.1 Operation Program .. 12
 5.2 Operating Budget .. 12
 5.3 Future Use .. 12
 5.4 Training and other Programs ... 12
6.0 Utilization of Equipment/Systems and Technologies ... 13
 6.1 Landfill Gas Equipment ... 13
 6.2 Maintenance and Training ... 13
7.0 Public Acceptance, Appearance, and Aesthetics ... 15
 7.1 Overall Appearance .. 15
 7.2 Community Education and Customer Service ... 15
 7.3 On-Site Facilities ... 16
8.0 Innovation and Creativity .. 18

Figures
Figure 1. Fast Fusion Welder .. 5
Figure 2. Skid Installation ... 5
Figure 3. Dual-Phase Well Design .. 7
Figure 4. Dual-Phase Well Locations ... 8
Figure 5. Gas Compression System Piping .. 13
Figure 6. Overview of the Landfill .. 15
Figure 7. Graphics Shown At Public Open House ... 16
Figure 8. Compressor Building ... 16
Figure 9. Public Drop-off Area Construction

Tables
Table 1. 2008 Solid Waste Quantities

Appendices
Appendix A. Public Open House Postcard
Appendix B. Public Open House Informational Handout
Appendix C. Ribbon Cutting Invitation
1.0 Introduction
Sioux Falls Regional Sanitary Landfill’s Landfill Gas Utilization

1.0 Introduction

1.1 Executive Summary

The gas collection system at the Sioux Falls Regional Sanitary Landfill (Landfill) consists of 42 dual phase wells, with plans to install more than 100 total wells as the capped area expands. The Landfill was previously flaring approximately 1,200 cubic feet per minute (cfm) of landfill gas (LFG) and that was expected to expand to 2,400 cfm in 2009. Rather than flaring or simply venting the LFG into the atmosphere, this gas could instead be used for alternative energy, and after completing a feasibility study, R.W. Beck advised that the best use would be to fuel the POET ethanol plant located in Chancellor, South Dakota. Not only does this prevent flaring of methane, but will also provide POET with approximately 10% of their natural gas need without using a fossil fuel. It is anticipated that LFG generation will increase and the ethanol plant could replace up to 30% of their natural gas need with LFG by 2025.

The project consisted of the following:

- LFG Collection System
- LFG Compression Equipment;
- 11 Miles of Gas Pipeline

The following sections outline the project specifics as well as landfill operations relating to LFG utilization.

1.2 Introduction and Background Information

The Landfill is located approximately 7.5 miles west of the City of Sioux Falls in South Dakota. The Landfill serves five counties including: Lake, Lincoln, McCook, Minnehaha, and Turner, with a population of approximately 205,000 citizens. Currently, the Landfill has a total permitted area of 612 acres which includes an Active Area and an Expansion Area for disposal as well as space for offices, monitoring systems, leachate collection, and sediment ponds. The active and expansion areas are each approximately 160 acres. A permit renewal is currently in process that would add permitted area, bringing the total to 709 acres, though the disposal footprint will not change from the previously approved 320 acres.

The Landfill manages the municipal solid waste (MSW) stream through an integrated program that includes:

- Waste education
- Waste reduction
- Recycling (glass, plastic bottles, newsprint, cardboard, aluminum and tin cans)
- Electronics Recycling
- Household hazardous waste (HHW) collection, reuse, and processing
Yard Waste Composting
Brush/Wood Waste
Asbestos Disposal
Petroleum Contaminated Soils Treatment
Tire Storage
Appliance Recycling
Construction and Demolition (C&D) Debris Disposal
MSW Disposal
Carcass Disposal Area

In 2008, the Landfill collected 163,408 tons of MSW, and summarized in Table 1 are the tonnages of other wastes collected in 2008.

Table 1
2008 Solid Waste Quantities

<table>
<thead>
<tr>
<th>Waste</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminated Soils</td>
<td>665 tons</td>
</tr>
<tr>
<td>Asbestos</td>
<td>875 cubic yards</td>
</tr>
<tr>
<td>Construction and Demolition Debris</td>
<td>54,832 tons</td>
</tr>
<tr>
<td>Yard Waste</td>
<td>5303 tons</td>
</tr>
<tr>
<td>Wood Waste</td>
<td>6223 tons</td>
</tr>
<tr>
<td>Appliances</td>
<td>1210 tons</td>
</tr>
</tbody>
</table>

The Landfill’s solid waste management programs provide environmental benefits, have been in regulatory compliance, and have been cost effective. However, this application focuses on the Landfill’s gas utilization.
2.0 Design & Construction
2.0 Design and Construction

2.1 Site Characteristics and Construction Techniques

The portion of the site that is currently being used for landfill gas collection is an existing unlined landfill area, the Active Area. The native soils at the Landfill predominately consist of clays, so the base of the Active Area consists of native, low permeability, clay soil. There was approximately 356,900 cubic yards of airspace remaining to reach capacity of the Active Area when surveyed in September of 2008, and capacity is expected to be reached early in 2010. Before wells were installed in the Active Area, leachate was allowed to pond at the base of the Active Area because there is no leachate collection system. When dewatering began, the previously saturated refuse began to produce LFG. In addition, wet refuse will produce LFG at a faster rate than the unsaturated refuse. The moisture content after dewatering as well as the moisture due to the climate of the Active Area makes this a very suitable site for LFG utilization. The size of the Active Area also lends well for LFG production. Because of an alternative cap construction, a high LFG collection efficiency is expected (i.e. 90%).

This LFG collected from the Active Area is directed to the new compressor building on the Landfill property. It is important in Sioux Falls that the system be inside due to the changes in weather. Because the timeline for the pipeline to be completed was within a year from the time the LFG Purchase Agreements were signed, the sequence of construction needed to be well thought out, and the weather consideration posed a design challenge for the project. The building was actually built first and Unison was charged with designing the skid (the system that filters, dries and compresses the gas) to be placed into the already constructed building. One additional consideration of the indoor environment is that all wiring in the compressor room is Class 1, Division 1, explosion proof wiring. The building was then finished with the same aesthetic features as the other buildings on the Landfill to create a cohesive, pleasing look.

For the pipeline construction, the contractor utilized both a plowing method and horizontal directional drilling (HDD). Both methods allowed for timely installation with minimal environmental disturbance. Timely construction was necessary for installation to be completed in just two months before winter. Ellingson finished a month ahead of schedule, and the 11 miles of pipe were fusion welded in just 2.5 weeks. The fusion welding was done with a Fast Fusion welder that utilizes a cooling system to increase the number of welds that can be completed in a given amount of time.

Figure 1. Fast Fusion Welder

Figure 2. Skid Installation
2.2 Merits of the Site Preparation and Design
The Landfill uses a supervisory control and data acquisition (SCADA) system to simplify many of their operations and this system was expanded to include the new compression building. The landfill operator can monitor, as well as operate, the skid system remotely with this equipment. The ability to monitor Landfill operations in real time coupled with the ability to make adjustments from the interface adds a level of safety and controllability that enhances the LFG utilization process. Unison can also monitor and operate the system from their office in Dubuque, Iowa.

2.3 Planning
The planning for the project began with a feasibility study in 2006. The study looked at two options. The first being the piping of LFG 11 miles to POET Ethanol Plant for direct thermal utilization and the second being the generation of electricity onsite and selling it to a local electric utility. The evaluation also included ownership options (City-owned and third party-owned) and funds available. Conversion of LFG to liquid methane and conversion of LFG to natural gas were evaluated in lesser detail. The study concluded that the Landfill generates a sufficient LFG amount to justify a LFG to energy project, and that direct utilization of the LFG by the ethanol plant would be more economically viable than the electricity generation alternatives. It was also determined that a city-owned option would be the most economically viable of the ownership options.
3.0 Environmental Controls
3.0 Environmental Controls

3.1 Discussion of Controls

Leachate and LFG Collection and Monitoring:

The Active Area is currently generating approximately 10,000 gallons of leachate per day. The pooled up leachate in the Active Area is saturating the waste, and as discussed above, by dewatering the refuse a greater amount of LFG can be generated. The first phase of the leachate and LFG extraction system was constructed in the Active Area in 2005. This consisted of 19 vertical wells for both leachate and LFG extraction. Additional wells will be installed as final grades are reached. The extraction is done using a single well casing, pneumatic pumps and a gravity drainage system, designed by R. W. Beck. A schematic of the well design can be seen in Figure 3.

![Figure 3. Dual-Phase Well Design](image)

The leachate is discharged to the perimeter LFG header pipe where the LFG is separated from the leachate at six different lift stations. To date, approximately four million gallons of leachate have been removed from the landfill which brings the landfill into compliance with
State environmental regulations and temporarily enhances LFG production. The wells are optimally spaced 75 feet on the crown and 150 feet on the shallow side-slopes. Figure 4 is a schematic representation of the well locations.

![Figure 4. Dual-Phase Well Locations](image)

The LFG flow rate to the flare that was used prior to pipeline installation was 550 cfm. It is anticipated that the flowrate after the final phase of leachate and LFG well installation in 2010 will be over 2,000 cfm. The Expansion Area is planned and permitted to include horizontal gas collectors in order to collect gas as the Landfill is filled. Recirculation of leachate in the Expansion Area is also planned and will increase LFG production. Recirculation of leachate in addition to horizontal gas collectors will maximize the amount and efficiency of gas collection in the Expansion Area. The flowrate after 2010 is expected to increase about 3-5% each year with the use of horizontal gas collectors in the Expansion Area.

The leachate management system includes leachate collection, storage/treatment and ultimate disposal. Leachate pumps are maintained in accordance with the manufacturer’s recommendations and cleanouts are provided for maintenance of all leachate piping. Leachate treatment ponds are equipped with aeration and mixing equipment for leachate treatment and are monitored for leaks as well as quality. Operation of the leachate management system requires daily, weekly, monthly, and annual inspections and operation monitoring by the Landfill Operator, Supervisor or City Representative. An annual report provides data on the volumes generated, hauled, recirculated; monitoring data analysis; pretreatment efficiencies; the recirculation system operation; and, any leachate management conclusions and recommendations for system modifications.
The LFG management in the Active Area is monitored in accordance with the Air Quality Permit. Monthly monitoring activities include:

- Record pressure gauge readings within the gas collection header pipe
- Monitor and record oxygen concentration in LFG
- Monitor and record LFG temperature at wellhead gauges and at gas collection header pipe gauge

Quarterly monitoring activities include:

- Monitor surface concentration of methane along the perimeter of the collection area and along a serpentine pattern

These monitoring activities are summarized and submitted in an annual and semi-annual report to the SDDENR, including the following:

- Compliance certification, including methods used to determine compliance such as monitoring, record-keeping, performance testing and reporting requirements.

Stormwater Monitoring:

Environmental monitoring at the Landfill includes groundwater, surface water, leachate and gas monitoring. A Comprehensive Monitoring Plan was prepared for the Landfill in 2005 and updated in 2007 which describes all procedures, frequency, and applicable regulatory documents completed at the Landfill. There is also a Comprehensive Surface Water Management Plan in place to effectively route runoff to appropriate holding structures and keep stormwater that comes in contact with waste contained within the permitted waste boundary.

Though storm water sampling is not required, the Landfill does voluntary sampling of surface water in accordance with the Storm Water Pollution Prevention Plan (SWPPP). This includes: semi-annual inspections to evaluate if changes need to be made to the best management practices and self-monitoring requirements; annual inspections as part of a comprehensive site evaluation; and bi-annual inspections of equipment, parking areas, roads and to verify spill kits are fully stocked.

Groundwater Monitoring:

The groundwater monitoring system consists of 33 monitoring wells and piezometers. Data is collected and analyzed semi-annually. Results and maps are submitted in the Annual Groundwater Monitoring report to the South Dakota Department of Environmental and Natural Resources (SDDENR).

3.2 Overall Program Impact

Removing the leachate from the active area is having a positive effect on both the environment and the LFG production for use at the ethanol plant. By utilizing the gas at the plant it not only controls methane gas emissions into the atmosphere, preventing greenhouse gas releases, it reduces the demand on natural gas at the ethanol plant.

The project will also provide an economic benefit. The capital investment will be paid back and then the funds received will ensure stable tipping fees at the Landfill while still allowing for program improvements.
3.3 Compatibility with the Environment

The greatest environmental compatibility of this method for LFG utilization is the reduction in greenhouse gas emissions at the Landfill and the reduction in fossil fuels that are needed at the ethanol plant.

In addition, an effort was made to ensure the pipeline construction would cause little environmental disturbance through methods described in section 2.1. Also discussed in section 2.1 was the decision to use consistent aesthetic features on the skid building in order to ensure a cohesive, attractive environment at the Landfill.
4.0 Regulatory Compliance
4.0 Regulatory Compliance

4.1 Integrated Solid Waste Management System
The Landfill will produce LFG with or without the gas utilization system. However, the utilization system allows for the reduction of greenhouse gas release into the environment. Methane gas has a global warming potential 21 times that of carbon dioxide and LFG is approximately half methane gas and half carbon dioxide. While breaking down the methane gas with a flare is better than simply allowing the methane to vent into the surrounding environment, even better would be to utilize this methane to displace the use of natural gas. Therefore, this gas product of the waste management system is reducing greenhouse gas emissions rather than contributing to them and reducing dependence on a fossil fuel by utilizing the landfill gas at the ethanol plant. As described above, the same wells that pull LFG from the Active Area are used to remove leachate. Removing this leachate protects the surrounding environment and enhances the LFG production in this area, creating an additional benefit.

The Expansion Area will provide for future airspace to serve the five county area’s solid waste management needs. This creates a great opportunity to incorporate the gas utilization system into the new cells and ensure efficiencies in the collection system. The Landfill has done an extraordinary job in planning for the future of the solid waste management programs as well as ensuring the future success of the LFG utilization as it relates to the integrated system.

4.2 Environmental Compliance
The Landfill has an exiting SDDENR Type I Solid Waste Facility Permit, Number 02-26B. The Landfill also holds several Conditional Use Permits with Minnehaha County as well as one with Lincoln County for the Leachate Storage/Treatment Pond Operation.

The Landfill holds permits issued by the SDDENR for surface water quality and air quality. The air quality permit is a Title V Air Quality Operating Permit.

4.3 Awards and Data
The project was completed and operating as of February, 2009, four months ahead of expected completion. No complications are expected and the compressor and pipeline have already been running near 90% efficiency.

A representative of the U.S. Environmental Protection Agency (EPA), Landfill Methane Outreach Program (LMOP) attended and spoke at the ribbon cutting event on March 27th to recognize the success of the pipeline project.
5.0 Planning, Operations & Financial Management
5.0 Planning, Operations & Financial Management

5.1 Operation Program
The pipeline is high density polyethylene (HDPE) and is designed to operate at a hoop stress of less than 20% of the pipe’s Specified Minimum Yield Stress (SMYS). The pipeline is buried at a minimum of 4 feet to the top of pipe. The maximum operating pressure for the 12-inch HDPE pipeline is 51 pounds. Periodic inspections will be made to ensure this is appropriate for the class locations and records will be maintained on all active segments of the gas line.

The City must file annual reports, incident reports and safety related conditions reports in accordance with state and federal regulations as indicated in the Operations and Maintenance (O&M) Manual for the Pipeline. The manual also describes the materials, design and pipeline components that must be used to meet the design objectives for the project.

Personnel that are to be operating the gas system must do so in accordance with the operations section of the manual described above. The City, under the direction of the landfill gas superintendent will review the O&M plan each year, review landfill gas department policies for safety and effectiveness, and adjust the procedures as necessary to provide a reasonable level of safety for personnel and record changes in the Operations and Maintenance Manual.

The landfill gas superintendent is responsible for recognition, determination and action regarding changes, failures, or unusual operating conditions of the gas system. The City is responsible for maintaining a damage prevention program for the pipeline, a separate Emergency Manual/Plan, and providing continuing public education.

5.2 Operating Budget
The project cost was approximately 4.5 million dollars. Operations and Maintenance are expected to be between $250,000 and $300,000 per year, with net revenues of $1,500,000 per year.

5.3 Future Use
The gas compression skid facility was built with expansion in mind. There is room for additional compressors as well as room to expand the building itself. As discussed previously, there is a definite plan to add wells to the Active and Expansion Areas to collect LFG and this has been accounted for in the pipeline and compression system designs. The SCADA system also has the ability to be expanded to include additional programs.

5.4 Training and Other Programs
Health and Safety training is done at the Landfill for many applications including an 8 hour HAZWOPER for those working around LFG. Specifically related to the pipeline project, which has been given the designation of a transmission line, training has been completed for the safety of working with LFG pipelines including: characteristics and hazards of natural gas, abnormal operating conditions, outside leak investigations, controlling the accidental release of gas, system patrolling, leakage surveys, and valve maintenance.
6.0 Utilization of Equipment/Systems and Technologies
6.0 Utilization of Equipment/Systems and Technologies

6.1 Landfill Gas Equipment

Gas Compression and Drying System designed by Unison:

The gas enters the system to the inlet heat exchanger where it is cooled to 70 degrees F. Then the gas goes through suction scrubbers to remove particulate and water. After filtration, the gas enters one of the compressors where it is compressed to an adjustable discharge pressure, 25 psig to 42 psig. Next, the gas goes through an oil separator to remove oil from compression. After compression, the gas enters one of the heat exchangers. The first heat exchanger uses hot gas from compression to reheat cold gas. The second uses chilled glycol to cool the gas to 40 degrees F. After cooling, the gas goes through a water knock-out. The cold gas then enters the other side of the first heat exchanger where it is reheated to about 80 degrees F, giving the gas a relative humidity of 25%. The gas is then delivered to the pipeline. The system is currently running at approximately 90% efficiency.

Figure 5. Gas Compression System Piping

6.2 Maintenance and Training

Maintenance on the pumps, wells, gas headers, etc. are completed for the LFG system regularly. The well field is also balanced at least once a month and pumps are cleaned every couple of weeks.

The City will maintain markings to identify all LFG pipelines. The transmission line will be patrolled at least once a year to observe surface conditions, and qualified employees will perform gas leakage surveys at least once per year. A record of the patrols, surveys, inspections, tests and repairs will document date, location and description of findings. All repairs and testing of repairs will be completed in accordance with the O&M Manual.
Unison did training for the employees on using the LFG compression skid equipment including: manual instrumentation and controls, regular maintenance procedures, maintenance schedules and general operation/adjustment guidelines.
7.0 Public Acceptance, Appearance, and Aesthetics
7.0 Public Acceptance, Appearance, and Aesthetics

7.1 Overall Appearance
The Landfill takes pride in the quality of experience that it provides to its customers. They also take pride in the cleanliness of the facilities and waste areas. Ensuring proper daily cover of the working faces greatly reduces litter, odor and erosion, which not only creates a better customer experience but enhances operations at the Landfill.

Figure 6. Overview of the Landfill

7.2 Community Education and Customer Service
A public open house was held on June 5, 2008 for the public to see the preliminary design of the pipeline for which residents received a postcard with the announcement. The postcard can be seen in Appendix A. An informational handout was also distributed at the meeting which can be seen in Appendix B. POET provided a number of easy to understand graphics that were used at an open house used to help the public understand the new LFG to energy system, as can be seen in Figure 7.

A ribbon cutting ceremony was held on Friday, March 27th, 2009, in which members from the Sioux Falls community were invited to attend. Appendix C shows an invitation for this event.
7.3 On-Site Facilities

The Landfill has used a common aesthetic theme throughout Landfill construction to create a cohesive environment. A picture of the compressor building can be seen in Figure 8. They also utilize buffer areas around the waste cells so that from the road or a distance there is a natural look to the area surrounding the Landfill.

In addition, in 2006, the city constructed a public drop-off area that makes waste drop-off easy and safe for the public,
keeping them away from the working landfill. Pictures of the drop-off construction can be seen in Figure 9. This drop-off area includes:

- MSW;
- C&D;
- Recyclables; and
- E-waste.

Figure 9. Public Drop-Off Area Construction
8.0 Innovation and Creativity
8.0 Innovation and Creativity

Some of the things that make this project unique compared to other facilities are the dual-phase collection wells, the SCADA system, the construction techniques and the fact that the pipeline is city owned.

As discussed before, the dual phase wells were design by R.W. Beck to not only pump the leachate out of the Active Area but to collect LFG as well. The lift stations prevent atmospheric air within the lift station from being pulled into the manifold pipe when the gas utilization system is operating. A vacuum of up to 60 inches of water column can be applied to the manifold pipe to draw LFG into the gas utilization system.

The SCADA system is a means for data acquisition of the Landfill processes that one can monitor in real time. This also provides the ability to remotely override some processes. The system is used throughout the Landfill and has been extended to include the LFG utilization system, giving the Landfill an integrated and comprehensive management tool.

The construction techniques used by Ellingson Companies for pipeline installation not only accelerated the time of installation but also limited environmental disturbance. They utilized fast fusion technology for pipe welding which incorporates a cooling system to increase the number of fusion welds that can be done in a given amount of time. They also chose to plow in and HDD the pipe to speed installation and limit disruption and restoration.

Ownership of the pipeline is unique to this project as well. Rather than a private developer working with the Landfill and ethanol plant and owning the pipeline, the city made the decision to maintain ownership. The funds used to pay for the pipeline project were enterprise funds of the Landfill that were acquired through tipping fees. Based on the feasibility study, the project should pay for itself in approximately four years, and then the revenues can start being used to fund improvements and additional programs at the Landfill.
Please join the City of Sioux Falls and R. W. Beck on Thursday, June 5, 2008 from 5:00 to 7:00 p.m. for a public open house to present the preliminary design of the low pressure landfill gas pipeline along 463rd Avenue between the Sioux Falls Regional Sanitary Landfill and POET’s ethanol plant in Chancellor. The pipeline will carry methane gas generated by decomposition at the landfill. Timeline and construction aspects will be discussed at the open house. Attend at any time. No formal presentation will be given.

Upon request, accommodations will be provided for persons with disabilities. Please contact the City Engineering Office, Ground Floor, City Hall, 224 West Ninth Street, Sioux Falls, SD, 367-8601 (voice) or 367-7039 (TTY) during regular business hours at least 48 hours in advance of the open house.

If you have any questions, please contact Dave McElroy, City of Sioux Falls, at 605.367.8163.
History
- The City of Sioux Falls (City) Landfill currently flares approximately 1,000 cubic feet per minute (cfm) of landfill gas (LFG), and will be expanded to 2,000 cfm in 2009.
- The LFG currently flared will supply gas to the POET ethanol plant.
- LFG is produced as waste in the Landfill decomposes. It is a combination of about 50% methane gas and 50% carbon dioxide.
- A study was performed to evaluate potential LFG to energy opportunities. The study was completed in August 2006 and found the POET ethanol plant located in Chancellor, South Dakota to be the preferred option.
- The LFG will initially displace about 10% of the ethanol plant’s natural gas need. By 2025, as more LFG is generated and collected this number could rise to 30%.

Route
- The majority of the pipeline will travel through the public right-of-way of two townships in Turner County – Home and Germantown.
- The beginning portion of the pipeline will travel through the Landfill property.
- A 30-foot section of the pipeline will travel through Minnehaha County right-of-way as it leaves the Landfill property and crosses 268th Street into Turner County.
- Approximately 8 miles of the pipeline will travel parallel to 463rd Avenue. Along this path, the pipeline will travel through several creeks and drainageways and County Road crossings.
- When needed in these crossing locations, the pipeline will be installed by a method called horizontal directional drilling (HDD).
- Shut-off valves and cleanouts will be located in locked manholes at County Road crossings.
- Gas line markers will be located every 1,000 feet along the pipeline route.

Design
- The pipeline will be similar to that of a natural gas pipeline, except it will be operated at a lower pressure than most natural gas pipelines.
- The pipeline will be operated at 40 pounds per square inch gauge (psig) at the Landfill end. The pressure will be reduced to 20 psig by the time it reaches POET’s end.
- The pipeline will be a 12” High Density Polyethylene pipe. A flexible yet very resilient material.
- The pipeline will be installed using an open trench method. There will be some areas (County Road crossings and drainageway/creek crossings) where the HDD method of installation will be utilized.
- The pipeline will be installed at a minimum of 4-feet below the ground.
- The City of Sioux Falls will install a compression unit with a gas meter at the Landfill, which will serve as the inlet to the pipeline.
- During the life of operation, the City of Sioux Falls will monitor and maintain the compression unit, flow meters (at the Landfill and at POET), and the pipeline.
Key:
LFG: Landfill Gas
HDPE: High Density Polyethylene
Min: Minimum
Right of Way

Note:
This drawing is a typical section of the LFG pipeline that will run along the either side of 463rd Avenue and the south side of both 268th Street and 277th Street.

Excavated material will be used for backfill
12" HDPE LFG pipe
Pipe bedding
Excavated trench will be returned to existing conditions

Approximately 25.0'

Section and Road

Excavation of trenches in 463rd Avenue will be recompacted and returned to existing conditions

12" HDPE LFG pipe crossing under 463rd Ave
Pipe bedding
Excavated trench will be returned to existing conditions

Approximately 25.0'

Note:
This drawing is a typical section of the LFG pipeline that will cross under 463rd Avenue. The pipeline will cross 463rd Avenue three times.

Contact
Dave McElroy - Landfill Superintendent
City of Sioux Falls - Public Works
dmcelroy@siouxfalls.org
605.367.8163

For more information visit http://www.epa.gov/lmop
Please join us for our Ribbon Cutting.

FRIDAY, MARCH 27, 2009

Methane Gas Compressor Building
Sioux Falls City Landfill
26750 464th Avenue
Sioux Falls, South Dakota

PROGRAM
10:30 – 11:00 a.m.
Expected Speakers: Mayor Dave Munson
 Jeff Broin, CEO of POET
 Swarupa Ganguli, U.S. Environmental Protection Agency

Dress weather appropriate. See back for directions.

Parking will be available on the right side of the road leading to the methane gas compressor building.

poet.com
You're invited.