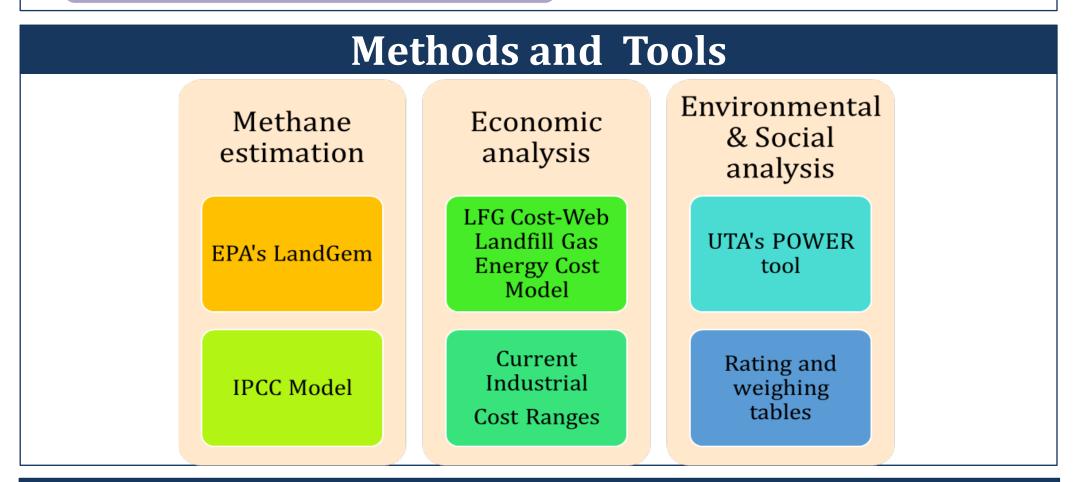
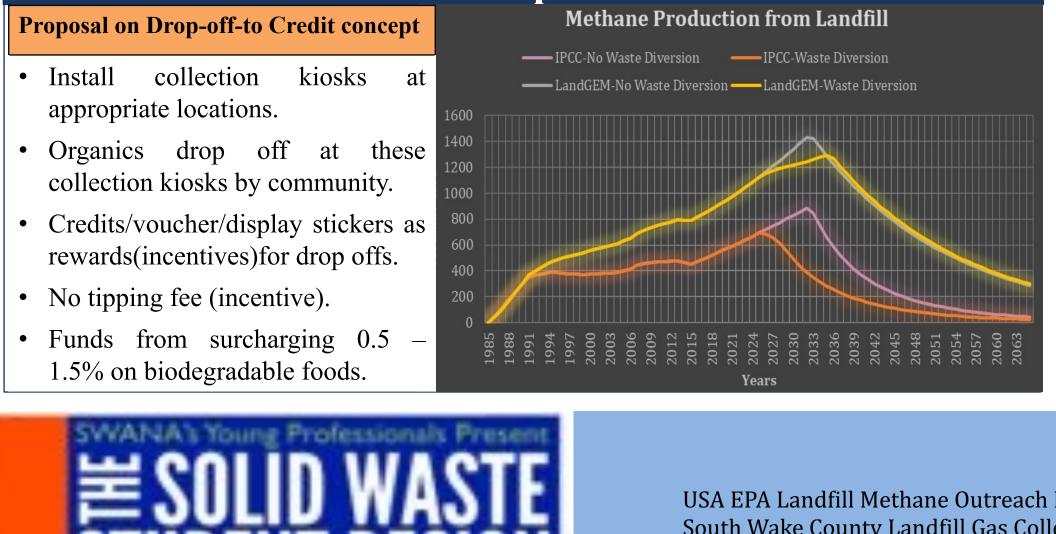


Sustainable solution for organic waste handling

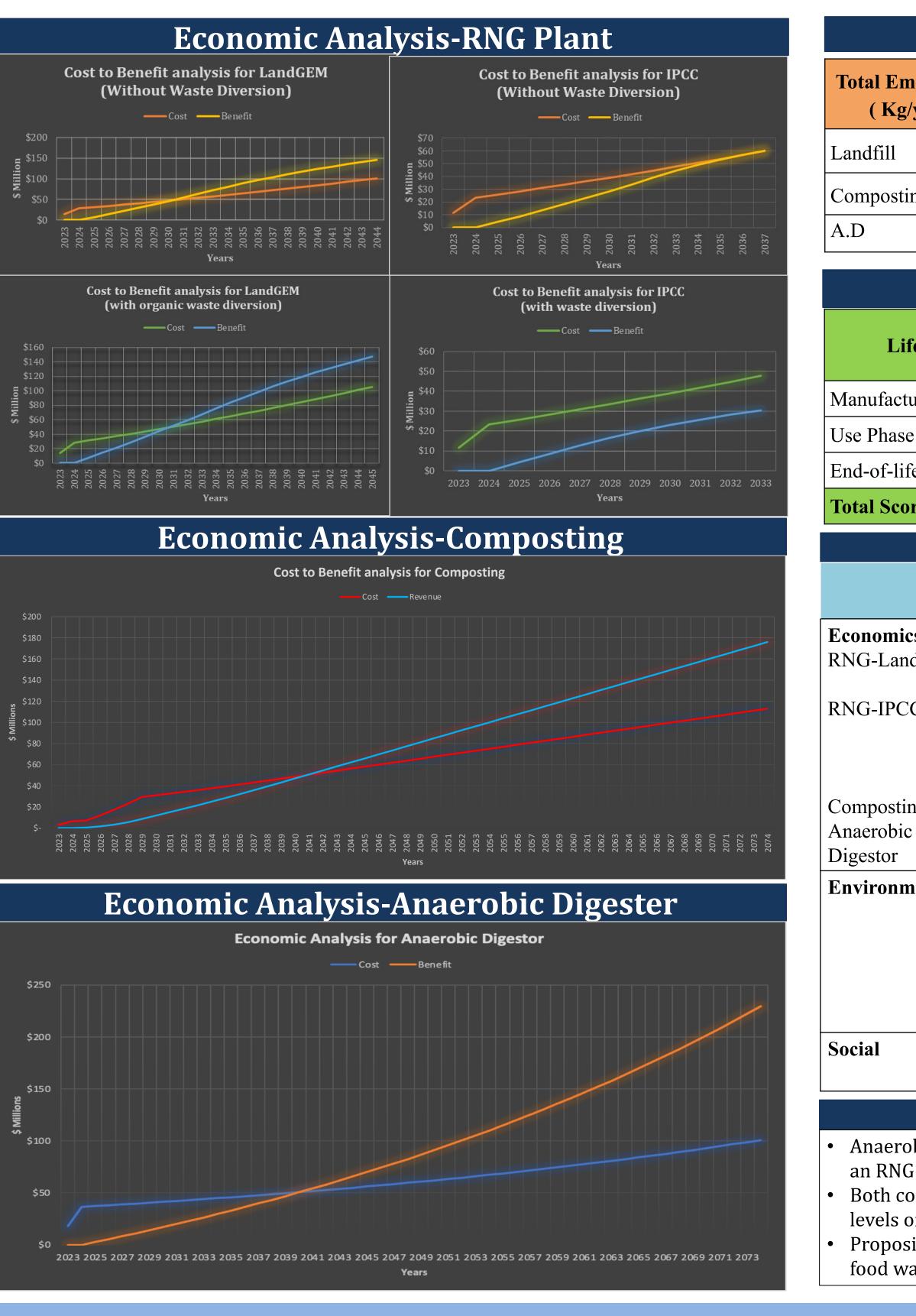

Objective & Background

To consider the 3 tiers of Sustainability to determine the best organic waste management option as shown below, for a county with a strong agricultural industry in the northwest region of US having a population of 600,000 people.


- Landfill the organics, set up LFG collection system and an RNG facility, or
- Divert the organics by implementing source separated organic collection program to compost the organics.

Scenarios Explored

Scenarios	• Cases	
1. RNG powerplant without organic waste diversion	 1.a: Using LandGEM Output 1.b: Using IPCC Output 	
2. RNG powerplant with organic waste diversion	 2.a: Using LandGEM Output 2.b: Using IPCC Output	
3. Composting	 3.a: Windrow 3.b: Covered Aerated Static Pile	
4. Anaerobic Digestors	 4.a:Existing AD 4.b: New AD	


Source Separation

USA EPA Landfill Methane Outreach Program (LMOP); Landfill Gas Control Measures, Agency for Toxic Substances and Disease Registry, Atlanta GA; Landfill Gas Collection and Control, SCS Engineers; South Wake County Landfill Gas Collection and Control System, NC; Landfill Gas Generation & Collection, Geo Engineer, April, 2021; Understanding the basics of landfill gas collection system (GCCS) maintenance. Bruce Clark, Dan Cooper, Gregory Hansen and Ken Guilbeault of SCS Engineers, August, 2011; Landfill Gas Collection and Treatment Systems, U.S. Army Corps of Engineers Washington DC, April 2013; Solid Waste Association of North America, 2017; EPA "Anaerobic Digestion Facilities Processing Food Waste in the United States (2017 and 2018)", January 2021; Composting Facility List, US and Territories, 2020, Region 9; Bhatt, A., Tao, L. "Economic Perspectives of Biogas Production via Anaerobic Digestion". Bioengineering. 2020, 7(3), 74; Vermont Agency of Natural Resource, Department of Environmental Consideration, Sight Identification Design; Klemeš, J.J, Liew, P.Y, Ho, W.S., Shiun. J., Cost Benefit Analysis of Composting and Anaerobic Digestion in a Community: A Review. 2017.

SWANA Solid Waste Student Design Competition, 2023 Sustainable Environmental Solutions

Aiswarya Acharath Mohanakrishnan, Doreen Ntiamoah-Asare, Hussain Al

References:

	1
Ť.	

Environmental Analysis							
nissions /yr)	VOCs	NO _x	PM ₁₀	PM _{2.5}	N ₂ O	CO ₂	CH4
	905	-939	-169	89	191,295	34,050,585	60,447,315
ing	81	643	26	20	3	8,377,736	829
	182	-1,541	-83	-97	32	-1,573,604	6,073

Social Analysis						
fo ovelo wheee	Number of points					
ife cycle phase	Landfill with RNG Plant	Compost	AD			
turing/construction	132	111	130			
se	498	549	597			
ife	162	90	90			
ores	792	750	817			

Discussion						
	Break-even	Capital cost \$	Ops & Maintenance \$			
cs						
ndGEM	7 years (2031)(with & without organic waste diversion)	23,265,000- 28,149,000	2,500,000-3,000,000			
CC	10 years(2034)without organic waste diversion; Does not					
	break-even with organic					
	diversion					
ing	17 years (in 2041)	\$20,550,000	\$807 <i>,</i> 525			
c	18 years (in 2042)	\$36,614,199	\$759,156			
mental	Landfill: Overall highest emissions of CO2, CH4, N2O, VOCs, NOx, PM2.5 and PM10.					
	Composting: Relatively high in NOx, PM2.5, PM10 and CO2, and relatively					
	low in VOCs, N2O and CH4 compared to Anaerobic Digestion.					

Anaerobic Digestion: Relatively high in VOCs, N2O and CH4 and relatively low in NOx, PM2.5, PM10 and CO2 compared to Composting.

Upon social analysis of Life-cycle phases, AD scored the highest, followed by Landfill (with RNG plant) while composting scored the least.

Conclusion

Anaerobic digestion and composting were found to be relatively favorable over installing an RNG plant on a landfill.

Both composting and anaerobic digestion were relatively cheaper and emitted lower levels of pollutants.

Proposing a pilot study on both (composting & AD) and installing a hybrid system where food waste can be diverted to AD whereas green waste and AD digestate to composting.

