Executive Summary

In 2009, the County of Simcoe (County) initiated a landfill mining and remediation work program at the closed Creemore Landfill Site #25 (Site). The overall objective of this program was to remediate the Site by systematically removing buried waste materials from the former landfill site as support for a potential future change to the land use designation of the property. This would eliminate costly monitoring and reporting requirements. In total, more than 45,000 m³ (49,000 yd³) of waste and fill soil were removed and replaced with equal amounts of clean backfill.

This initiative also acts as a pilot project for the County and surrounding regions by creating a framework for landfill remediation via waste removal and declassification. With the success of this project and the County’s commitment to environmental stewardship, further remedial efforts at other small closed landfill sites in the County is anticipated.
I. **Summarize the remedial action.**

From 2009 – 2011, the County of Simcoe worked together with environmental consultants to conduct necessary studies in preparation for the remediation project. Studies included:

- Documentation of historical landfill operations at the property
- Characterization of the nature and extent of the buried waste
- Assessment of local groundwater quality and levels
- Completion of a report entitled *Assessment for Proposed Removal of Waste - Former Village of Creemore Landfill Site*
- Phase I and II Environmental Site Assessments

The waste excavation program took place over a nine-week period between September and November 2011, and was completed during a two-week period in September 2012. The work was timed to coincide with a period of seasonally low groundwater levels. A detailed photographic record of the waste excavation was compiled in order to show the methodology, the nature of the waste materials excavated, and the scope of completed work.

Test Pit & Borehole Investigation
A series of test pits were excavated to determine characterization of the nature and extent of waste materials buried and to assess the soil and local groundwater quality in preparation for the remediation project. Boreholes were advanced over the waste fill area to determine approximate waste quantities.
Dewatering
The County concluded from previous monitoring of test wells that the site would require dewatering at the rate of 50,000 Litres (13,200 gallons) per day in order to facilitate access to the waste, sampling the underlying soils, and backfilling the excavation. Excavation dewatering was carried out under Ministry of the Environment (MOE) Permit to Take Water. Initially water was re-infiltrated into an unexcavated area of the Site, however, when the volume of water that required pumping increased, some water was removed from the Site by tanker truck to a nearby sewage treatment plant.

Sump Construction

Water Haulage from Site into Sewage Water Treatment Plant

Waste Excavation & Screening Plant
The fill soil and waste materials were removed using a hydraulic excavator that placed material into trucks. As the waste was removed, it was then transferred to another operating landfill owned by the County (Nottawasga Landfill Site #10) for screening prior to re-landfilling. See Appendix 1 – Waste Removal & Findings.

Trench Excavation Process

It was anticipated that the overs (anything that did not fall through a 1-inch screen) would be re-landfilled; the fines that were separated from the waste were stockpiled for use as daily cover at active County landfill sites. Once waste was being processed through a screening plant, County staff noticed the material was comprised mostly of rocks and small pieces of scrap metal. There was no putrescible waste, likely due to
the burning that occurred at the site. As such, it did not require re-landfilling. As the material was still considered to be ‘waste’ it was necessary to be utilized on the landfill footprint. Staff received permission from the Ministry of the Environment to use the cleaner material as daily cover without processing the excavated soils through a screening plant.

Screening Plant

![Screening Plant Image](image1)

Any tires and large pieces of scrap metal and concrete were separated and incorporated in the County’s diversion programs at the Nottawasaga Landfill Site #10 to be recycled.

During the excavation, one black drum containing an oily tar-like liquid was discovered. A Hazmat team was contracted to remove the material.

Discovery of Hazardous Material / Removal by Hazmat Team

![Discovery of Hazardous Material Image](image2)

Soil between the trenches was observed to consist of clean sand/gravel visually free of waste materials. As such, it was left in place and soil samples were taken periodically to confirm compliance with Ministry of the Environment quality standards.

The project followed the trenches of buried waste, which continued off the property of the closed landfill. This caused initial waste and budget estimates to be higher than originally anticipated. The total volume of waste removed from the Site was 45,000 m³ (49,000 yd³). See Figure 1 below for a summary.
Figure 1 – Excavation / Backfill Quantities

<table>
<thead>
<tr>
<th>Year</th>
<th>Waste / Fill Soil Removed (m³)</th>
<th>Water Removal (m³)</th>
<th>Clean Sand (Backfill) Brought to Site (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>39,500</td>
<td>1,218</td>
<td>37,000 (25,150 from commercial pits and 11,850 from Nottawasaga Landfill, which was excavated for the last cell construction)</td>
</tr>
<tr>
<td>2012</td>
<td>5,500</td>
<td>0</td>
<td>6,000 (all from commercial pits)</td>
</tr>
<tr>
<td>Total</td>
<td>45,000</td>
<td>1,218</td>
<td>43,000</td>
</tr>
</tbody>
</table>

Backfilling
Following excavation and removal of waste, the Site was backfilled using appropriate material consisting of fine sands excavated from the Nottawasaga Landfill Site #10 during the preparation of Cell No. 4. The soil for backfilling also included commercial sands purchased from local gravel pits. Woodchips were added and graded at surface for support of vegetation.

Placement of Clean Backfill

II. Discuss the site, contamination of concern, regulatory requirements, facility requirements, site constraints, integration with operations and/or current use, site soils, hydrology/geology.

The landfill was originally used for the disposal of non-putrescible and non-collectable waste, including tree limbs, construction debris, white metals, appliance, tires, mattresses/furniture, concrete, lumber, etc. from 1955 – 1989. See Figure 2 for a historical summary of the site.

Figure 2 – Site History

<table>
<thead>
<tr>
<th>Period</th>
<th>Land Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1955 – late 1970s</td>
<td>Municipal landfill owned by the Corporation of the Village of Creemore</td>
</tr>
<tr>
<td>Late 1970s – Late 1980s</td>
<td>Public Works Yard and Waste Disposal Site for Uncollectable Waste</td>
</tr>
<tr>
<td>April 1980</td>
<td>Environmental Compliance Approval Issued by Ministry of the Environment (formerly known as Certificate of Approval)</td>
</tr>
</tbody>
</table>
The County of Simcoe assumed legislative authority for waste over 16 lower tier municipalities, and in doing so, took ownership over hundreds of open and closed landfills in the process. This included former Creemore Landfill, which was designated as Site #25.

Site leased to Creemore Springs Brewery Ltd. for equipment storage
Proposal to remove waste from Site
Amended Environmental Compliance Approval received from MOE permitting removal of waste
Waste removed and the Site is vacant.
Closure monitoring is ongoing.

The former landfill is considered a Brownfield by Provincial legislation, which is defined as:

“...an undeveloped or previously developed property that may be contaminated. They are usually, but not exclusively, former industrial or commercial properties that may be underutilized, derelict or vacant.” – Provincial Policy Statement, 2014.

In order to redevelop a Brownfield or to redesignate the land use from less sensitive to more sensitive (for example, from commercial use to residential use) a record of site condition is required to be filed under Ontario Regulation 153/04. The County will file this once the second year of monitoring has been approved by the MOE. Until then, the site will continue to be utilized by the County.

The potential environmental concern due to the historic land use is high due to the known historic presence of waste on the Site. Contaminants of concern associated with landfills are shown in Figure 3.

Figure 3 – Known Potential Landfill Contaminants

<table>
<thead>
<tr>
<th>Dioxins / Furans</th>
<th>Semi-Volatiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td>Leachate</td>
</tr>
<tr>
<td>Volatiles</td>
<td>Methane Migration</td>
</tr>
</tbody>
</table>

Regulatory / Facility Requirements/Site Operations
Each County-owned waste disposal facility has an Environmental Compliance Approval (ECA) formerly known as Certificate of Approval, in which site operations are in accordance. These documents outline the approved use of the site and existing monitoring requirements. The Site’s amended ECA contains the following monitoring requirements after the removal of waste:

Year 1 – Groundwater monitoring and sampling be conducted semi-annually (spring and fall)
Year 2 – Groundwater monitoring and sampling be conducted annually
Further to these requirements, the County will continue to assess soil and groundwater conditions at the Site; future monitoring requirements will be based on the County’s environmental consultant’s recommendations subsequent to approval by the MOE. At this time, the County is at the end of year 1 of
the above noted monitoring program. Once the requirements have been satisfied, the County intends on working with the MOE to remove this site from the landfill registry.

Additionally, the MOE approved the County’s application for a Permit to Take Water. This is necessary when more than 50,000 L/day is removed from a groundwater source and is part of Ontario Regulation 387/04.

This Site must also comply with the Environmental Protection Act, whose goal it is to contribute to sustainable development through pollution prevention and protection of the environment, human life and health from the risks associated with toxic substances (www.wikipedia.org, 2014). This Act works as an umbrella for many other provincial regulatory requirements:

- Ontario Regulation 511/09
- Ontario Regulation 153/04
 - Record of Site Condition (RSC) – This is a requirement of Ont. Reg.153/04. This does not apply to this site, however, one will be required for the sale of the property following the removal of waste and land use has been re-designated to commercial/industrial.
 - The waste excavation program was completed using the Ministry of the Environment document entitled Guide for Completing Phase Two Environmental Site Assessment under Ontario Regulation 153/04.

Site Soils, Hydrology & Geology
The site is approximately 9.61 acres in size. The Site is located within a glacial spillway deposit in the Niagara Escarpment physiographic region. Quarterly geographic mapping indicates that the near-surface soils in the vicinity of the Site consist of glaciofluvial deposits including outwash gravel, sand and silt, with gravel predominating. The nature of the surficial soils in this area reduces the possibility of contaminants migrating. Historical on-site intrusive investigations (boreholes and test pits) confirm that on-site native soils consist of gravelly/cobbly/sandy silty deposits into which shallow trenches were excavated and waste materials were buried/burned and covered by granular fill mixed with minor variable waste materials.

The local topography across the Site is relatively flat and is located within a physiographic region know as the Avenging Flats, approximately 550 yards from the Mad River. The groundwater table is located between 1.1 - 3.7 yards below ground. The bedrock geology mapping for the area indicates that the local area is underlain by the Queenstone Formation (shale). Specifically grey-green and/or grey-blue shale with siltstone and limestone inter-beds belonging to the Georgian Bay Formation (229 m above sea level).

Surface water drainage is from northwest to southeast, parallel to the direction of the Mad River. Adjacent land use includes a mixture of residential (urban/rural) and agricultural properties.
III. Explain how the remedy was selected.

The County choose this site and remedy for the based on the following parameters and benefits:

- Development pressure
- Potential for offsite impacts to occur
- Removal of buried waste would eliminate the potential environmental concerns (methane and leachate impacts on groundwater).
- Proximity to Town’s water supply well
- This remediation project will act as a pilot project so other small closed landfill sites (owned by the County) may be remediated in a similar manner.
- Once the remediation project was completed to the satisfaction of the Ministry of the Environment, an application can be made to remove the requirement for the monitoring program at the Site, saving the County annual expenses.
- The remediation of the Site will remove the requirements of the Ministry of the Environment’s Guideline D-4. A D4 Study is a report to be completed by a qualified person under the Environmental Protection Act in order to determine if there will be any negative impacts to persons and/or property due to a Waste Disposal Site to be submitted to the appropriate approval authority. Currently, any development application within 500m of an open or closed landfill site requires a D4 study to be carried out, which can range in cost from $5,000-$10,000 or more depending on the complexity of the application. By remediating this site, the D4 monitoring requirements will be removed, thereby saving money.
- Potential for future resale to recoup costs

IV. Discuss the design, design challenges and considerations for environmental protection; demonstrate that the implementation met or will meet regulatory requirements.

Site Design/Design Challenges

The landfill type is a trench and fill, which includes a trench dug into the soil using a backhoe or bulldozer. Waste is then placed in one end at the bottom of the trench, compacted, and covered with soil excavated during landfill construction. Historical memos to the MOE from the early 1970s indicated the following descriptions of the Site:

- Two open trenches: one for wood and one for domestic waste. They were 6 meters wide and 35-45 meters long. One of the trenches showed remains of burned waste.
- High levels of groundwater have historically been encountered at this Site
- Shallow trenches

Historically, there is a high level of groundwater at this Site, and as a result, test pitting activities in the waste fill areas have been difficult. The remedial work was scheduled to coincide with a period of seasonally low groundwater levels, and in addition, excavated areas had to be backfilled on an ongoing basis to avoid the accumulation of groundwater.
The age of the site created challenges with the remedial efforts. Lack of historical site records made it difficult to determine an accurate composition and location of the waste.

Considerations for the Environmental Protection / Did the Project Meet Regulatory Requirements?
All County waste management facilities are kept in compliance through the County of Simcoe’s Technical Compliance Supervisor. This position ensures all regulatory and facility requirements for each site (open and closed) are in compliance with the Site’s Environmental Compliance Approval, as set by the Ministry of the Environment.

The following monitoring programs were conducted at this Site to ensure environmental protection:

Hydrogeologic Evaluation (2006)
Seven monitoring wells were constructed 3 meters below the groundwater level (6 meters deep in total). As part of this evaluation, groundwater samples were collected and analysed for inorganic indicator parameters, metal, and volatile organic compounds (VOCs). Combustible vapour monitoring was also carried out. Data indicated a very low organic strength leachate. Hardness, organic nitrogen and total dissolved solids values were higher than the Ontario Drinking Water Quality Standards (ODWQS). No VOCs or combustible vapours were detected.

There was evidence of potential leachate-related effects on groundwater quality in the form of elevated hardness, alkalinity, iron, manganese, and total dissolved solids concentrations at one of the monitoring wells. Any samples that exceeded the compliance standard, trenches were re-excavated at a deeper level followed by re-analysis of soil samples. Available groundwater quality data from these monitoring wells indicated that the leachate was highly diluted with low organic strength. See Appendix 2 - Analytical Results

Hydrogeological Assessment Report (2011)
Prior to excavation of waste, the County hired environmental consultants to conduct a hydrogeological assessment report, which was included in the application to the MOE for the Permit to Take Water. The County also had two temporary leachate monitors installed on Site. Analytical results from the water samples drawn from these monitors were also included in this report, which indicated all parameters passed sewer use. During removal of waste, groundwater samples were collected from the perimeter monitoring wells in three-week intervals to identify changes in groundwater quality. Soil samples were taken daily to a lab for analysis, where geochemical results were reviewed for compliance against MOE table 2 and table 4 standards.

Ongoing Monitoring (2012 – Present)
Following the removal of waste, ongoing monitoring of landfill gas was not warranted as previous monitoring had not detected elevated concentrations of combustible vapours.

Groundwater monitoring will continue two years following removal of waste. The County is currently at the end of year 1.
V. Explain whether construction cost correlated with the predicted cost for the project, and if not, why.

Initially, the County’s consultants provided volume estimates that corresponded to a remediation cost $490,000. These costs were estimates based on quantities of waste estimated from previous investigations and outlined in consultant reports. Anticipated costs were lower, as County staff would carry out the work. These costs were estimates based on quantities of waste estimated from previous investigations and outlined in consultant reports.

Throughout the excavation process, County staff encountered more waste than was originally estimated by the County’s environmental consultants. Material was also found to be deeper in a significant portion of the Site, (more than 2 meters below the water table and 7 meters below the surface). The following factors caused County staff to temporarily discontinue the project in November 2011:

- The groundwater table was rising due to the rainfall, making deep excavation more difficult and costly
- An anticipated 6,000 m³ of material requiring excavation remains
- The area of waste excavation has increased to potentially include areas of the Site necessary for Creemore Springs utility of their leased warehouse building. This lease would expire in early 2012 and completing the project then without a lease to be disrupted was preferable.

Given these factors, the areas of excavation were backfilled and put on hold until 2012. Staff asked for an increased budget to be approved by County Council to complete the project, bringing the total to $710,000. The waste excavation project was completed in September of 2012 within the increased budget allowance.

2) Operation and Maintenance (25 points)

I. Explain how sustainability has been incorporated into the design of the facility.

Sustainability can be measured through economic and environmental factors. Prior to the excavation of waste, this Site was not sustainable by many definitions. A redevelopment of a Brownfield (closed landfill), into commercial or industrial land (as discussed in Q1, ii) will incorporate sustainability as illustrated in Figure 4.
II. **Show how the operation, maintenance and monitoring of the system are user friendly.**

Following the excavation of waste, the Ministry of the Environment requires the County complete two years of monitoring (as per Amended ECA) in order to obtain the Record of Site Condition (RSC) as per Ontario Regulation 153/04. The County is currently at the end of year 1, and the monitoring report indicates positive results. As of December 31, 2014, all monitoring requirements will be complete. A final report will be issued to the MOE in early 2015. Removing monitoring requirements (including D4 study requirements) eliminates any future maintenance and monitoring of the closed landfill site, including quarterly site inspections and annual reports.

III. **Describe how performance and progress are monitored.**

All performance and progress for this project are measured by the Ministry of the Environment through the Water and Soil Quality Standards. As this project has been in compliance with these standards, this demonstrates that this project has been successful. See results in Q1, IV.
IV. Explain whether operation, maintenance and monitoring costs are consistent with predicted costs, and if not, why?

The initial estimates of waste were inaccurate, causing the project to be well above initial predicted costs. Monitoring costs are consistent with predicted costs.

3) Stakeholder Communication and Acceptance (20 points)

I. Discuss the communication process with the stakeholders (decision makers, regulators, and neighbours).

Decision Makers (County Council) - Three reports were submitted to County Council prior to and during the project. They outlined the scope of work, purpose for the remedial efforts, and outline the financial impacts to the County budget. Staff were in attendance during these Council meetings to answer questions. All reports/budget were approved.

Regulators (Ministry of the Environment) – The County worked in compliance with the Ministry of the Environment for all regulatory aspects of the remedial efforts as discussed in Q1, I.

Township of Clearview – The Township acted as partners with the County on this initiative by allowing the liquid pumped from the excavations to be discharged into the sanitary sewer located adjacent to the Site.

II. Discuss the public relations and public education program.

The Ministry of the Environment indicates in the Site’s ECA that adjacent neighbours must be made aware of any changes or potential impacts resulting from the site. The County of Simcoe’s public relations policy in regards to landfill neighbours includes residents living within a 500 meter footprint of the site to coincide with the D4 assessment area (as defined in Section 1). However, as the Village of Creemore is a small community, a letter was distributed to all households within the community (350 residents), which indicated the timeline and nature of the project. The letter made residents aware of the potential for nuisance impacts, which could include odors, dust, and noise. They were encouraged to contact the County with any concerns.

III. Describe any concerns from the stakeholders and how those concerns were resolved.

There were no concerns from the stakeholders regarding this project but rather the opposite; residents showed positive feedback once learning the landfill was being remediated and the waste was being removed. The County did not receive any complaints or letters of concern during the project.
County Council was in full support of the remediation project and passed all resolutions to complete the project. This included approval of budget, as well as a bylaw authorizing the County of Simcoe to remediate the closed Site.

IV. Provide evidence that stakeholders are satisfied with the overall project.

The absence of any negative feedback does provide evidence that residents were satisfied with the remediation of the former landfill site.

Additionally, the County was asked to provide the Ontario Waste Management Association (OWMA) with a tour of the former Creemore Landfill to showcase the remedial efforts. The OWMA acts as a voice for the waste and resource management industry, so having this tour demonstrated that the project was a success and acted as a benchmark for other remediation projects at municipal landfills.

4) Innovation and Creativity (25 points)

(I & II) Discuss unique or innovative aspects of the remedial action and discuss what makes this approach different from others.

Since the County of Simcoe assumed the authority for waste in 1990, there have been several remediation projects including:

- landfill mining of cells to engineer landfills to remove source of potential contamination
- installation of liners and leachate collection systems under partially-filled cells

“40% of potentially contaminated properties in Canada are found in Ontario.”
Environmental Careers Organization (ECO) Canada, 2007 “Who will do the Cleanup?”
Figure 5, below, illustrates the conditions of landfills assumed by the County and how they were remediated.

With a combined landfill capacity of six years at the time of this project, and a moratorium against new landfills, the County has learned the value of remediation projects through experience. The County is not aware of another project approaching this size that not only removed the waste entirely but also removed the Site from the Ministry of the Environment’s list of closed landfills. By doing this, the County will be able to redesignate the land use from a former landfill (Brownfield) to an industrial/commercial property, thus removing costly monitoring and reporting requirements. At the time of this project, the Ministry of the Environment confirmed that the County of Simcoe were the only municipality in Ontario doing this.
Appendix 1 - Waste Removal & Findings

County of Simcoe

LEGEND:

- UNIT OF EXCAVATION FOR WASTE REMOVAL
- PROPERTY LINE
- WASTE REMOVED (TRENCH) in 2011
- WASTE REMOVED (TRENCH) in 2012
- EXCAVATION AREA (Variable Depth 2011 and 2012)
- HYDROCARBON ODOR (AREA EXCAVATED)
 - DRUM WITH LIQUID (REMOVED BY BRECON ENVIRONMENTAL, INC.)
 - SOIL SAMPLE LOCATIONS (2011) (GRID LOCATION AND DEPTH)
 - SOIL SAMPLE LOCATIONS TRENCH INVESTIGATION (JULY 2013) (GRID LOCATION AND DEPTH)
 - SOIL SAMPLE LOCATIONS (SEPTEMBER 2013) (GRID LOCATION AND DEPTH)

SCALE: 1:750

EXCAVATION WASTE REMOVAL
LANDFILL WASTE REMOVAL PROGRAM
CLOSED CREEMORE LANDFILL SITE
COUNTY OF SIMCOE

GENIVAR

1400 1st Ave W, Suite 100, Coquitlam, BC V3H 0E9
Telephone: (604) 294-8383 / Fax: (604) 294-0793
Toll Free: 1-866-502-5865

CONTR. J M
DRAWN: J J D
APPROVED: J M
DATE: MARCH 201
SCALE: SEE SCALE B
REV. NO: 12/15/13
TYP. NO: 4-2
TABLE A
Analytical Results for Leachate Samples

Former Village of Creemore Landfill Site
Township of Clearview, County of Simcoe

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MW107 11-May-2011</th>
<th>MW111 11-May-2011</th>
<th>Table 1(^2) (Sewer Use By-law)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD (5 day)</td>
<td><5</td>
<td><5</td>
<td>300</td>
</tr>
<tr>
<td>Cyanide, Total</td>
<td><0.002</td>
<td><0.002</td>
<td>2</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>3.62</td>
<td>5.65</td>
<td>10</td>
</tr>
<tr>
<td>Suspended Solids, Total</td>
<td>Not Analysed</td>
<td>Not Analysed</td>
<td>350</td>
</tr>
<tr>
<td>Cadmium, Total</td>
<td><0.005</td>
<td><0.005</td>
<td>0.7</td>
</tr>
<tr>
<td>Chromium, Total</td>
<td><0.020</td>
<td><0.020</td>
<td>5</td>
</tr>
<tr>
<td>Cobalt, Total</td>
<td><0.010</td>
<td><0.010</td>
<td>5</td>
</tr>
<tr>
<td>Copper, Total</td>
<td><0.020</td>
<td><0.020</td>
<td>3</td>
</tr>
<tr>
<td>Lead, Total</td>
<td><0.020</td>
<td><0.020</td>
<td>2</td>
</tr>
<tr>
<td>Molybdenum, Total</td>
<td><0.020</td>
<td><0.020</td>
<td>5</td>
</tr>
<tr>
<td>Nickel, Total</td>
<td><0.030</td>
<td><0.030</td>
<td>3</td>
</tr>
<tr>
<td>Silver, Total</td>
<td><0.020</td>
<td><0.020</td>
<td>5</td>
</tr>
<tr>
<td>Zinc, Total</td>
<td><0.020</td>
<td>0.099</td>
<td>3</td>
</tr>
<tr>
<td>Antimony, Total</td>
<td><0.020</td>
<td><0.020</td>
<td>5</td>
</tr>
<tr>
<td>Arsenic, Total</td>
<td><0.015</td>
<td><0.015</td>
<td>1</td>
</tr>
<tr>
<td>Selenium, Total</td>
<td><0.020</td>
<td><0.020</td>
<td>5</td>
</tr>
<tr>
<td>Mercury, Total</td>
<td><0.0002</td>
<td><0.0002</td>
<td>0.05</td>
</tr>
<tr>
<td>Phenolics</td>
<td><0.001</td>
<td><0.001</td>
<td>1.0</td>
</tr>
<tr>
<td>Chloroform</td>
<td><0.00020</td>
<td><0.00020</td>
<td>0.04</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><0.00010</td>
<td><0.00010</td>
<td>0.47</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td><0.00030</td>
<td><0.00030</td>
<td>0.21</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><0.00010</td>
<td><0.00010</td>
<td>0.04</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><0.00020</td>
<td><0.00020</td>
<td>0.05</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><0.00020</td>
<td><0.00020</td>
<td>0.07</td>
</tr>
<tr>
<td>Benzene</td>
<td><0.00020</td>
<td>0.00023</td>
<td>0.01</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><0.00010</td>
<td><0.00010</td>
<td>0.16</td>
</tr>
<tr>
<td>Toluene</td>
<td><0.00020</td>
<td>0.0003</td>
<td>0.27</td>
</tr>
<tr>
<td>o-Xylene</td>
<td><0.00010</td>
<td><0.00010</td>
<td>0.52</td>
</tr>
<tr>
<td>Oil and Grease (mineral) in water</td>
<td><0.5</td>
<td><0.5</td>
<td>15</td>
</tr>
<tr>
<td>Oil and Grease (animal/vegetable)</td>
<td>1.0</td>
<td>1.9</td>
<td>150</td>
</tr>
<tr>
<td>Fluoride</td>
<td><0.05</td>
<td>0.10</td>
<td>10</td>
</tr>
</tbody>
</table>

Notes:
1. All concentrations reported in milligrams per litre (mg/L).
2. Table 1 - Limits for Sanitary and Combined Sewers, from By-law Number 00-13, Township of Clearview.